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Problem Set 1

Here we are – the first problem set of the quarter! This problem set is designed to give you practice
writing proofs on a variety of different topics. We hope that this problem set gives you a sense of
what it's like to work with proof-based mathematics and solidifies your understanding of set theory.

Before you start this problem set, please do the following:

• Sign up for Piazza so that you have an easy way to ask us questions.

• Review the office hours timetable to find good times to drop on by to ask questions.

• Review Handout #02, “Mathematical Prerequisites,” for an overview of the concepts and
techniques we assume you’re familiar with, and ask about anything you’re unsure about.

• Review Handout #03, “How to Succeed in CS103,” for advice about how to approach the
problem sets in CS103. In particular, make sure to start early!

• Review Handout #04, “Set Theory Definitions,” for a refresher on key terms, definitions, and
theorems about set theory that might come up in this problem set.

• Review Handout #05, “Problem Set Policies,” to make sure you understand our late policy
and how to submit your work.

• Review Handout #06, “CS103 and the Stanford Honor Code,” to make sure you understand
our collaboration and citation policies.

• Review Handout #07, “Guide to Proofs,” which has advice about how to write and structure
your proofs.

• Review Handout #08, “Mathematical Vocabulary,” which covers mathematical phrases you
may need to use in your proofs and how to use them correctly.

• Review Handout #09, “Guide to Indirect Proofs,” which provides some guidance about how
to set up proofs by contradiction and contrapositive.

• Review the online “Guide to ∈ and ⊆” to make sure you understand the distinction between
these terms.

As always, please feel free to drop by office hours or post on Piazza if you have any questions. We're
happy to help out.

Good luck, and have fun!

Checkpoint Questions Due Monday, April 10th, at the start of class.
Remaining Questions Due Friday, April 14th, at the start of class.
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Write your solutions to the following checkpoint problems and submit them through GradeScope by
Monday, April 10th at 3:00PM Pacific time. These problems will be graded on a 0 / 1 / 2 scale. So-
lutions that reasonably attempt to solve all of the problems, even if the attempts are incorrect, will
receive two points. Solutions that reasonably attempt some but not all of the problems will receive
one point. Solutions that do not reasonably attempt any of the problems – or solutions that are sub-
mitted after the deadline – will receive zero points.

Essentially, if you've made a good, honest effort to solve all of the problems and you submit on time,
you should receive two points even if your solutions contain errors.

Please make the best effort you can when solving these problems. We want the feedback we give
you on your solutions to be as useful as possible, so the more time and effort you put into them, the
better we'll be able to comment on your proof style and technique. We will try to get these problems
returned to you with feedback on your proof style by Wednesday, April 12th. Submission instruc-
tions are included in the “Problem Set Policies” handout.

Checkpoint Problem One: Finding Negations
In order to write a proof by contradiction or contrapositive, you’ll need to determine the negation of
one or more statements. In Friday’s lecture, we talked about a few common classes of statements
and how to form their negations. Using what you’ve learned, answer the following multiple-choice
questions and briefly explain how you arrived at your answer.

Which of the following is the negation of “everything that has a beginning has an end?”

A) Everything that does not have a beginning has an end.
B) Everything that has a beginning has no end.
C) There is something that has no beginning and has an end.
D) There is something that has a beginning and has no end.

Which of the following is the negation of “there is a successful person who is grateful?”

A) There is an unsuccessful person who is grateful.
B) There is a successful person who is ungrateful.
C) Every successful person is grateful.
D) Every successful person is ungrateful.
E) Every unsuccessful person is grateful.
F) Every unsuccessful person is ungrateful.

Which of the following is the negation of “if A ⊆ B, then A – B = Ø?”

A) If A ⊆ B, then A – B = Ø.
B) If A ⊆ B, then A – B ≠ Ø.
C) If A ⊈ B, then A – B = Ø.
D) If A ⊈ B, then A – B ≠ Ø.
E) There are sets A and B where A ⊆ B and A – B = Ø.
F) There are sets A and B where A ⊆ B and A – B ≠ Ø.
G) There are sets A and B where A ⊈ B and A – B = Ø.
H) There are sets A and B where A ⊈ B and A – B ≠ Ø.
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Checkpoint Problem Two: Multiples of Three
In class, we talked a fair amount about odd and even numbers, which arise when dividing numbers
in half. This question generalizes the idea of “even” and “odd” to similar terms that arise when di-
viding by three.

An integer is called a multiple of three if it can be written as 3k for some integer k. An integer is
congruent to one modulo three if it can be written as 3k + 1 for some integer k, and an integer is
congruent to two modulo three if it can be written as 3k + 2 for some integer k. For each integer n,
exactly one of the following is true (you don't need to prove this):

• n is a multiple of three.

• n is congruent to one modulo three.

• n is congruent to two modulo three.

We'd like you to prove this result:

For every integer n, n is a multiple of three if and only if n2 is a multiple of three.

To do this, we'll have you prove the following two statements:

For any integer n, if n a multiple of three, then n2 is a multiple of three.

For any integer n, if n2 is a multiple of three, then n is a multiple of three.

We’ve broken this question down into a few parts.

i. Prove the first of these statements with a direct proof.

ii. Prove the second of these statements using a proof by contrapositive. Make sure that you
state the contrapositive of the statement explicitly before you attempt to prove it.

iii. Prove, by contradiction, that √3 is irrational. Make sure that you explicitly state what as-
sumption you are making before you derive a contradiction from it. Recall from lecture that
a rational number is one that can be written as p / q for integers p and q where q ≠ 0 and p
and q have no common divisor other than ±1.
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The remainder of these problems should be completed and
submitted through GradeScope by Friday, April 14th at the start of class.

Problem One: Set Theory Warmup
This question is designed to help you get used to the notation and mathematical conventions sur-
rounding sets. Consider the following sets:

    A = { 1, 2, 3, 4 }
    B  = { 2, 2, 2, 1, 4, 3 }
    C  = { 1, {2}, {{3, 4}} }
    D  = { 1, 3 }
    E  = ℕ
    F = { ℕ }

Answer each of the following questions and briefly justify your answers. No proofs are necessary.

i. Which pairs of the above sets, if any, are equal to one another?
ii. Is D ∈ A? Is D ⊆ A?
iii. Is D ∈ ℘(A)? Is D ⊆ ℘(A)?
iv. What is A ∩ C? How about A ∪ C? How about A Δ C?
v. What is A – C? How about {A – C}? Are those sets equal?
vi. What is |B|? What is |E|? What is |F|?
vii. What is E – A? Express your answer in set-builder notation.

Problem Two: Much Ado About Nothing
It can take a bit of practice to get used to the empty set. This problem will ask you to think about a
few different sets related to Ø. Answer each of the following questions. No proofs or justifications
are necessary.

i. What is Ø ∪ {Ø}? How about Ø ∩ {Ø}?
ii. What is {Ø} ∪ {{Ø}}? How about {Ø} ∩ {{Ø}}?
iii. What is |{Ø, {Ø}}|?
iv. What is ℘(℘(Ø))? How about ℘(℘(℘(Ø)))? When writing your answer, please make your

best effort to clearly indicate the brace groupings – the TAs will really appreciate it!

Problem Three: Properties of Sets
Here are some claims about properties of sets. Some of them are true and some of them are false.
For each true statement, write a proof that the statement is true. For each false statement, write a
disproof of the statement (that is, write its negation, then prove the negation.) You can use any proof
techniques you’d like. 

i. For all sets A, B, and C, if A ∈ B and B ∈ C, then A ∈ C.
ii. For all sets A and B, if ℘(A) = ℘(B), then A = B.
iii. For all sets A and B, the following is true: (A – B) ∪ B = A.
iv. There exists a set A where ℘(A) = {A}.
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Problem Four: The Power Set Revisited
In our first lecture, we saw an operation called the power set that, given a set S, produces a set ℘(S)
consisting of all the subsets of the set S. Why didn't we introduce an operation that, given a set S,
produces a set consisting of all the elements of S?
 

Problem Five: Two Is Irrational?
In lecture, we proved that √2 is irrational, and in the checkpoint problem you proved that √3 is irra-
tional. Below is a purported proof that √4 is irrational:

Theorem: √4 is irrational.

Proof: Assume for the sake of contradiction that √4 is rational. Then there must exist
integers  p and  q where  q ≠ 0, where  p /  q = √4 , and where  p and  q have no
common factors other than 1 and -1.

Starting with p / q = √4  and squaring both sides tells us that p2 / q2 = 4. We can
then cross-multiply by q2 to see that p2 = 4q2. Since q2 is an integer and p2 = 4q2,
we see that  p2 is a multiple of four, and therefore that  p is a multiple of four.
This tells us that p = 4n for some integer n.
Since 4q2 = p2 and p = 4n, we can use some algebraic substitutions to show that
4q2 = (4n)2 = 16n2, so q2 = 4n2. Since n2 is an integer and q2 = 4n2, we see that q2

is a multiple of four, so q is a multiple of four as well. But since both p and q
are multiples of four, we see that p and q share a common divisor other than ±1,
contradicting our initial assumption. We have reached a contradiction, so our
assumption must have been incorrect. Thus √4 is irrational. ■

This proof has to be wrong, because √4 = 2 = 2/1, so it is indeed rational!

What error does this proof make that lets it conclude √4 is irrational? Be specific.

Problem Six: A Multiple Choice Problem
A variation on the following question has been making the rounds on the Internet recently:

What is the answer to this question?

A) All of the below.
B) All of the above.
C) Exactly one of the above.
D) None of the above.
E) Two or more of the above.

 

Decide which answer is correct. Prove that it’s the correct answer and that all other answers are
wrong. We recommend structuring your proof as a series of lemmas, one per multiple-choice an-
swer, in which you prove whether the given choice is correct or incorrect. Finding the right order to
the lemmas will make your life a lot easier.

As a hint, you may want to think about using a proof by contradiction. If you can show that an an-
swer can’t be correct, it must be incorrect, and vice-versa.
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Problem Seven: Modular Arithmetic
Different numbers can yield the same remainder when divided by some number. For example, the
numbers 2, 5, 8, 11, and 14 all leave a remainder of two when divided by three, while the numbers
1, 12, 23, and 34 all leave a remainder of one when divided by eleven. To formalize this relationship
between numbers, we'll introduce a relation ≡ₖ that, intuitively, indicates that two numbers leave the
same remainder when divided by k. For example, we'd say that 1 ≡₁₁ 12 and that 8 ≡₃ 11.

To be more rigorous, we'll formally define ≡ₖ. For any integer k, define a ≡ₖ b as follows:

We say that a ≡ₖ b if there exists an integer q such that a – b = kq

For example, 7 ≡₃ 4, because 7 – 4 = 3 = 3·1, and 13 ≡₄ 5 because 13 – 5 = 8 = 4·2. If x ≡ₖ y, we
say that x is congruent to y modulo k, hence the terminology in the checkpoint problem. In this prob-
lem, you will prove several properties of modular congruence.

i. Prove that for any integer x and any integer k that x ≡ₖ x.

ii. Prove that for any integers x and y and any integer k that if x ≡  yₖ , then y ≡  xₖ .

iii. Prove that for any integers x, y, and z and any integer k that if x ≡  yₖ  and y ≡  zₖ , then x ≡ₖ z.

Be careful not to assume what you're trying to prove. If you need to prove that there is some integer
q such that a – b = kq, don't begin by assuming that a – b = kq and rearranging that equality, since
you haven't yet proven that the equality is true! Instead, proceed along the lines of how we proved
that n2 is even whenever n is even: start with the expression a – b and show how to manipulate it into
something that’s a multiple of k.

The three properties you have just proven show that modular congruence is an equivalence relation.
Equivalence relations are important throughout mathematics, and we'll see more examples of them
later in the quarter.

Problem Eight: Tiling a Chessboard
Suppose you have a standard 8 × 8 chessboard with two opposite corners
removed, as shown here. In the course notes (pages 60 - 61), there's a
proof that it's impossible to tile this chessboard using 2 × 1 dominoes. This
question considers what happens if you try to tile the chessboard using
right triominoes, L-shaped tiles that look like this:

i. Prove that it is impossible to tile an 8 × 8 chessboard missing two opposite corners with right
triominoes.

ii. For n ≥ 3, is it ever possible to tile an n × n chessboard missing two opposite corners with
right triominoes? If so, find a number n ≥ 3 such that it's possible and show how to tile an
n × n chessboard missing two opposite corners with right triominoes. If not, prove that for
every  n ≥ 3, it's impossible to tile an  n ×  n chessboard missing two opposite corners with
right triominoes.
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Problem Nine: Yablo's Paradox
A logical paradox is a statement that results in a contradiction regardless of whether it's true or false.
One of the simplest paradoxes is the Liar's paradox, which is the following:

This statement is false.
If this statement is true, then by its own admission, it must be false – a contradiction! On the other
hand, if the statement is false, then it must be true – a contradiction! Since this statement results in a
contradiction regardless of whether it's true or false, it's a paradox.

Paradoxes often arise as a result of self-reference. In the Liar's Paradox, the paradox arises because
the statement directly refers to itself. However, it's not the only paradox that can arise from self-ref-
erence. This problem explores a paradox called Yablo's paradox.

Consider the following collection of infinitely many statements numbered S₀, S₁, S₂, …, where there
is a statement S  ₙ for each natural number n. These statements are ordered in a list as follows:

(S₀):  All statements in this list after this one are false.
(S₁):  All statements in this list after this one are false.
(S₂):  All statements in this list after this one are false.

···
 

More generally, for each n ∈ ℕ, the statement (Sₙ) is
(Sₙ):  All statements in this list after this one are false.

Surprisingly, the interplay between these statements makes every statement in the list a paradox.

i. Prove that every statement in this list is a paradox. Some hints on this problem:

• We’ve asked you to prove a universal statement (every element in this list is a paradox).
What is the general template for proving a universal statement?

• Split your proof into two parts. First, show that you get a contradiction if any of the
statements in the list are true. Then, show that you get a contradiction if any of the state-
ments in the list are false.

• You should assume, as we’ve been doing in class, that every statement is either true or
false. You don’t need to worry about statements that are neither true nor false.

Now, consider the following modification to this list. Instead of infinitely many statements, suppose
that there are “only” 10,000,000,000 statements. Specifically, suppose we have these statements:

(T₀):  All statements in this list after this one are false.
(T₁):  All statements in this list after this one are false.
(T₂):  All statements in this list after this one are false.

···

 (T₉,₉₉₉,₉₉₉,₉₉₉):  All statements in this list after this one are false.               
 

There's still a lot of statements here, but not infinitely many of them. Interestingly, these statements
are all perfectly consistent with one another and do not result in any paradoxes.

ii. For each statement in the above list, determine whether it's true or false and explain why
your choices are consistent with one another.

Going forward, don't worry about paradoxical statements in CS103. We won't talk about any more
statements like these. ☺
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Problem Ten: Symmetric Latin Squares
A Latin square is an n × n grid filled with the numbers 1, 2, 3, …, n such that every number ap-
pears in every row and every column exactly once. For example, the following are Latin squares:

1 2 3

3 1 2

2 3 1

4 2 1

1 3 2

3 1 4

2 4 3

3

4

2

1

1 3 5

2 4 1

3 5 2

4 1 3

2

3

4

5

4

5

1

2

5 2 4 1 3

A symmetric Latin square is a Latin square that is symmetric across the main diagonal. That is, the
elements at positions (i, j) and (j, i) are always the same.  For example:

1 2 3

2 3 1

3 1 2

4 2 3

2 3 1

3 1 4

1 4 2

1

4

2

3

1 2 3

2 4 5

3 5 2

4 3 1

4

3

1

5

5

1

4

2

5 1 4 2 3

The main diagonal of a Latin square is the diagonal starting in the upper-left corner of the Latin
square and ending in the lower-right corner. 

Prove that in any n × n symmetric Latin square where n is odd, every number 1, 2, 3, …, n must ap-
pear at least once on the main diagonal.

As a note, this statement is not true if n is even and this statement is not true if the Latin square isn't
symmetric. As a good way of checking your work, if you have an answer written up to this problem,
read over it and make sure that you specifically refer to the fact that n is odd and to the fact that the
Latin square is symmetric. If your proof doesn't rely on these facts, it is almost certainly incorrect.
(Generally speaking, this is a great way to check your proofs: try changing the assumptions you're
making and see if your proof still works. If it does, chances are it contains a logical error.)

(Hint: split the Latin square into three regions – the main diagonal and the two regions above and be-
low the main diagonal.)
 

Extra Credit Problem: The Mouse and the Cheese (1 Point Extra Credit)*

On each problem set, we'll provide an optional extra credit problem. When we compute final grades
at the end of the quarter, we compute the grading curve without any extra credit factored in, then re-
compute grades a second time to factor in extra credit. This way, you're not at any disadvantage if
you decide not to work through these problems. If you do complete the extra credit problems, you
may get a slight boost to your overall grade. As a matter of course policy, we don't provide any hints
on the extra credit problems – after all, they're supposed to be challenge problems! However, we're
happy to chat about them after the problem sets come due.

Suppose that you have a 3” × 3” × 3” cube of cheese subdivided into twenty-seven 1” × 1” × 1”
smaller cubes of cheese. A mouse wants to eat the entire cube of cheese and does so as follows: she
first picks any small cube to eat first, then moves to an adjacent small cube of cheese (i.e. a cube that
shares a face with the cube that was just eaten) to eat next, then repeats this process.

Prove that the mouse can't eat the centermost cube of cheese last.

* Adapted from Problem 4E of A Course in Combinatorics, Second Edition by Lint and Wilson.


